

God! (out of all shortest path distances:

$$\partial(s, v) = Min \sum_{\substack{p \leq e \\ p: s > t p > th}} We$$

• relaxing tense edges
• priority queue
Pelaxing tense edges
let
$$D[V] \ge d(S,V)$$

overestimate, keep finding shurter paths
(latim: $D[V] \in \min(D[V], D[V], D[V])$

For now: WE RED (positive)

Two key ingredients in Diskstra's algo:

Proof:
$$D(u) + W_{(u,v)} \ge \partial(s, u) + U_{(u,v)}$$

$$\ge \partial(s, v)$$

You get to cut in line.

- (Nort (X'No))
- Delete (X)
- · (Arat Min ()

Assume all of V reachable from S
(for -free graph primitive: BFS)

$$SSSP Positive (G, S):$$

$$H \in Heep \cdot lnit()$$

$$H \cdot lnsert (S, O)$$
For veV, u t S: H · lnsert (V, w)

$$J \in Array. lnit(n)$$

$$While |H| > O:$$

$$lock in a \{ V \in H. Extract Min() = O((nlught))$$

$$H. Delate Min() = O((nlught))$$

$$H. Delate(u) = O((nlught))$$

$$H. Misert (u, min(u.ual, v.ual+V(u,v)))$$

$$Return d$$

We have (positivity) path length Z d(SIV:)+ W(V:N)+ d(U, t) Z U.Val Z t. Val There's no better path. Bellman - Ford (Part V, Section 3.2) The glaves are off. Arbitrary graph, arbitrary edge weights

... Nemember, no hegotive-weight Cycles.
2
2
3
Shortest yoth distance
5
Not well-defined.
Noit, didn't we solve APSP in O(m³)???
Yes. The exact some D150 gots O(mn) SSSP.
(n⁴ version is secretly min² => mn)

$$S(V)(L) = Shortest S>v path, SL edges$$

 $S(V)(L) = min (S(V)(L-1), Min S(W)(L-1) + W(WV))$
(mine $S(W)(L-1) + W(WV)$

Cool consequence: detecting negative-weight cycles Algo: Run Bellman-Ford (heck if any tense edges DEV] > D(u) + W(u,v)

on pith length.

no cycles

Yes iff negative-weight cycle.

No NWC => no tense edse
Proof: BF convetes
$$D = d$$

If tense edge, Ch decresse D
Earlier shared D stays onerestimate =><=
NWC => tense edge
Proof: Let NWC be $(V_{11}V_2)_{1...}(V_{K_1}V_1)$
Swyrdse for any D
 $D(V_1) \leq D(V_{1-1}) + W_{(V_{1-1},V_1)} + i \in (E)$
Sum both sides,
 $\sum D(V_1) \leq \sum D(V_{1-1}) + W_{(V_{1-1},V_1)}$
 $i \in (E)$
 $\sum D(V_1) \leq \sum D(V_{1-1}) + W_{(V_{1-1},V_1)}$
 $i \in (E)$
 $\sum D(V_1) \leq \sum D(V_{1-1}) + W_{(V_{1-1},V_1)}$
 $i \in (E)$
 $\sum D(V_1) \leq \sum D(V_{1-1}) + W_{(V_{1-1},V_1)}$